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Summary

/

The optional sampling theorem for marti ngéles indexed by a par-

tially ordered set is true if the index set is directed. However, the
corresponding result for submartingales indexed by a partially ordered
set is generally false. In this paper, we completely characterize the
class of stopping times for which tpé optional sampling theorem is true
for all uniformly bounded submar ﬁgales indexed by countable partially
ordered sets. By assuming a cofditional independence property, we show
that when the index set is Rz the optional sampling theorem is true for
all uniformly bounded submartingales and all stopping times. This con-
ditional independence property is satisfied in cases where the sub-
martingales and stopping times are measurable with respect to the two-
parameter Wiener proces. A counterlexample shows that the optional sampling

&2

property is satisfied.

en (32 even if the conditional independence
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OPTIONAL SAMPLING OF SUBMARTINGALES INDEXED BY PARTIALLY ORDERED SETS

1. Introduction

Bochner (1955) formulated the martingale theory of Doob (1953) for
random functions on a directed® index set with the intention of clarifying

and simplifying several probabilistic concepts in “terms of martingale

concepts. With this motivation he defined martingales, submartingales
and stopping times in the general context of a directed index set and he
stated general versions of the martinga]é convergence theorem and the
optional sampling theorem. Since that time several authors have studied
these conjectures and found that the general case of directed indices re-
quires additional hypotheses to obtain generalized versions of the results
for linearly ordered index sets. On the question of martingale conver-
gence, Krickeberg (1956), Helms (1958) and Chow (1960) have obtained
generalized versions of Doob's (1953) results for linearly ordered index
sets. See also the monograph of Hayes and Pauc (1970). More recently,
Gut (1976) and Gabriel (1977) have studied convergence of martingales
indexed by directed sets and app11ed'these results to investigate the law
of large numbers for multiparameter stochastic processes.

Using a restricted definition of stopping time, Chow (1960) proved
that the optional sampling theorem was true for martingales in the gen-
eral case of directed index sets. Kurtz (1977) removed Chow's restric-
tions on the stopping time and extended the results to the case when the

index set is a topological lattice. In addition to proving an optional

American Mathematical Society, 1970, subject classifications. Primary
60640; Secondary 60G45.

Key words and phrases. Optional sampling, submartingale, reachable stop-
ping time, optimal stopping problem, partially ordered index set.




sampling theorem for martingales with a directed index set, Chow (1960)
also showed that the analogous result.for submartingales was false even
for very simple examples. Nevertheless, the optional sampling theorem is
true for submartingales with a partially ordered index set if suitable
assumptions are made. Haggstrom (1966), extending the work of Snell (1952)
on martingale systems theorems and optimal stopping problems, defined
submartingales indexéd by a.;;gg,z a special type of partially ordered

set which is not directed. In addition, he proved a version of the

optional sampling theorem for a special class of stopping times called

control variables.?

In the first part of this paper (Section 2) we consider the optional
sampling theorem for submartingales indexed by countable (but otherwise
general) partially ordered sets. We define the concept of reachability

for pairs of stopping times and we reformulate Haggstrom's problem for

general partially ordered time sets. The concept of reachable stopping

times generalizes Haggstrom's notion of control variable. We show that
if 3 stopping time t is reachable from a stopping time o, then the op-
tional sampling theorem is true for all submartingales satisfying a
uniform bound. Conversely, we show that if the optional sampling
theorem is true for the pair 1,0 of stopping times and for any uniformly
bounded submartingale, then t must be reachable from ¢. Thus, we obtain
a complete characterization of the case in which the optional sampling
theorem is true for general submartingales.

In the second part (Section 3) of this paper we assume that the in-

creasing family of o-fields satisfies a special conditional independence

Wi
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property that can be defined when the index set is such that any two
elements have a greatest lower bound. This is a straightforward generali-
zation of the conditional independence property that Cairoli and Walsh
(1975) define for the index set Rf.’ Assuming this conditional in-
dependence hypothesis, we can show that if the index set T is a tree with
respect to its order relation s and if o,t are stopping times with os 1,
then t is always reachable from o. Likewise, assuming the conditional in-
dependence property, we can show that if o and t are stopping times on

Z2 and os1, then T is reachable from o. Consequently, the optional sampling
theorem is true for all stopping times and all uniformly bounded sub-
martingales defined on either a tree or on 22. when the conditional in-
dependence property is satisfied. It is a simple matter to extend the
optional sampling theorem for the case of the index set Zz to the case of

right continuous martingales defined on Rz. A counterexample reveals

that the optional sampling theorem is not true for Z" or R" when n>2.




2. Optional Sampling for Submartingales Indexed by Partially Ordered Sets

2.1 Notation, Conventions and Basic Definitions

We will let T denote the partially ordered index set in this paper
and except for one case in Section 3, we will always assume that T is
countable. We will use s to denote both the partial order relation on T
and the usual 1inear order relation on the set R of real numbers, but
there should be no confusion as to which case is meant. Let (Q,F,P) denote
the underlying probability space and {F(t) : te T} a family of sub o-fields
of P indexed by T. We will always assume that F and each F(t) are com-
plete with respect to the probability measure P. Following convention,
we omit "a.s." from all equalities and inequalities between random func-
tions, although we implicitly assume that these relationships only hold
almost surely.

It is straightforward to extend the usual definitions of increasing
family, submartingale and stopping time to the case of a partially ordered
index set. Nevertheless, we assemble these definitions here for the sake
of completeness. The family {F(t) : teT} is said to be increasing with
respect to < if sst implies that P(s)<F(t). A mapping X : TxQ+R ts
adapted to the family {P(t) : teT} ifw+X(t,w) is F(t)-measurable for

each t in T. To be concise, let us denot§ the random variable w-X(t,w)

by X(t). A mapping X is uniformly bounded if there exists a real-valued
random variable X, with finite expectation E(X,) such that [X(t)|s X for
all t. A submartingale X with respect to the increasing family {F(t) : t T}
fs a map X : TxQ-+R such that X is adapted to {F(t) : teT}, such that

-
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the expectation E(|X(t)]) is finite for each t and such that the condi-
tional expectation satisfies

(2.1) X(s) s E(X(t)|A(s))

whenever s <t. Similarly, a martingale is a submartingale for which
equality holds in (2.1). Note that in this paper we will always assume
that submartingales are uniformly bounded.

A stopping time t with respect to an increasing family {F(t) : teT}
is a mapping t :

Q+T which satisfies the measurability property
{r=t}e F(t) for all t.

Corresponding to each stopping time t there is
a g-field denoted by F(t) and defined to be the o-field of sets A in

P such that An {t=t} lies in P(t) for each t. If o is a stopping time,
let ST(o) denote the collection of all stopping times t such that os<r.
The optional sampling theorem gives conditions under which

(2.2) X(a) s E(X(7)|F(a))

for a given t in ST(c) and for a given submartingale X. Let 0s(o) denote

the collection of all t in ST(o) such that (2.2) is true for all uniformly
bounded submartingales X.

If the index set is the set of integers ordered
as usual, then standard theorems (see Neveu (1975)) imply that sr(c) =0s(a).

As Chow (1960) showed with a simple counterexample, this is not true for

ge'"'.ﬂ partially ordered index sets, and in general one only has
0s(-)eS87(a).

In the remainder of this section we are going to characterize
0S(g) in terms of the concept of reachability which we discuss next.

In
Section 3 we will show that in certain special cases in which T is not
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1inearly ordered we can still have 0S(o) = S7(0).

2.2 Reachabilit
Throughout the following definitions and discussions let us assume

that the partially ordered index set; the underlying probability space and
the increasing family of o-fields are fixed. Thus, for example, "stop-
ping time" will mean “stopping time on T with respect to the increasing
family {F(t) : teT}."

Definition 1

A decision function ¢ is a mapping ¢ : TxQ-+T with the following
properties:

(2.3) t s ¢(t,w)

for all t in T, and almost all w in Q. Let ¢(t) denote the random function

w+¢(t,w). Then we require that
E (2.4) {8(t) = s} < F(t)

for all t,s in T. Let D denote the collection of all decision functions.
Note that D depends on T,s and {F(t) : t<T}. For any positive integer
k let ok denote k applications of the random function ¢. That is, ¢k

defined recursively by

is

(2.5)  o**1(t,u) = o(¢%(t.w),0)

where we define ¢°(t,u) =t for all t and w. Also, for a random function
+1

g : Q-+T let ¢(o) denote the random function w+é(o(w),w). Thus, ok

¢(¢"(t)) -¢k(¢(t)). The concept of a decision function is central to our
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development of the notion of reachability. Having defined decision func-
tions, we can define several types of reachability as follows. In each
of the following definitions assume that o is a stopping time and that T

is a mapping T : @+T such that {r=t} is F-measurable for each t in T.

Definition 2

We say that t is finitely reachable from c'if there is a decision
function ¢ in D and an integer k such that

(2.6)  o%0) =t

Let FR(o) denote the collection of all t which are finitely reachable

from o.

Definition 3

We say that t is strongly reachable from o if there is a decision

function ¢ in D such that the limit

(2.7) lim ¢k(o)

exists almost surely and is equal to t. The limit (2.7) is interpreted

in terms of the discrete topology on T. That is, for almost all w we have
'll“lm ok(a(u) ,w) =t if and only if ¢"(o(w),w) =t for some integer n. Let
<o

SR(o) denote the collection of all t which are strongly reachable from .

Definition 4

We say that t is reachable from o if there is a sequence {1, } of T,

in FR(o) such that

-




s oy A G T

- we will show the cohverse relation 0S(c) <R(c). First we prove the fol-

Theorem 1

(2.8) lim P(‘l’k zt) = 0

Let R(c) denote the collection of all t which are reachable from o.
In general one has the following relationships between the collec-

tions of random functions we have just defined:

(2.9) FR(0) < sr(a) < r(o) = 0s(0) < sr(0)

In particular, note that the relationship R(c) =0S(s) characterizes those
pairs of stopping times for which the optional sampling theorem is true
for uniformly bounded submartingales. In the present subsection we will

show that FR(g) < SR(g) <R(c) <0S(c) < ST(o), and in the next subsection 2.2

lowing simple theorem.

Suppose that ¢ is a stopping time. Then the following relationships

are true:

(2.10) FR(g) < SR(g) < R(o) < ST(0)

Proof

We divide the proof into four steps in which we prove (i) FR(o) < ST(0)
(11) #R(0) = SR(0), (i11) SR(0) < R(o) and finally (iv) R(g) =ST(g) to obtain

(2.10).

(1) We will shovi that for ¢ €D and t «ST(c) we always have ¢(t) € ST(q).
Having shown this, one easily deduces by induction that ¢k(c) € ST(g) for
any integer k<0 and hence that FR(c) <5T(c). It is clear that for ¢ <D,
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t¢ ST(0) we always have os ¢(t), so it only remains to show that the
measurability condition {¢(t) =s} e F(t) is satisfied. Since t<¢(1) a.s.,

for each t the event
(2.11) {o(2) =t} - {o(z) =t, Tst}

has zero probability. Note that the event {¢(t) =t, t< t} can be written

as
(2.12)  v{{e(s) =t} n {r=s} : sst}

'S'lnce ¢ is a decision function and since t is a stopping time the events
{¢(s) =t} and {t =5} are F(s)-measurable and hence F(t)-measurable for
all sst. It follows from (2.12) that {¢(t) =t, ts t} is F(t)-measurable,
and from the fact that (2.11) has zero probability and that 7(t) is
complete it follows that {¢(t) =t} is F(t)-measurable. Hence, ¢(t) is
a member of ST(a).

(ii) Suppose that ¢eD, o is a stopping time and k is a nonnegative

integer. Define y : TxQ-+T as

(2.13)  w(t) =t  if ¢¥(a) =t
w(t) = o(t) if ¢¥(a) =t

from (1) we see that ¢k(c) is a stopping time and hence the events {¢k(a) = t}
and {¢k(o) = t} are F(t)-measurable. It follows easily that y satisfies

the measurability condition (2.4). The condition (2.3) is easy to see

also, and thus, y is a decision function. Note that for each integer

320, we have y3*1(q) = o3*1(0) if wi(0) = 0X(0). 1f wI(a)=6X(a), then

“~
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it is easy to see from the definition of ¥ that ¥"(0) = 6%(c) for all m2j.-
Thus, if j 2k, then w‘j(o) '¢k(c). Consequently, 1im wj(o) exists and
equals ¢k(o). Hence, ¢k(c) € SR(a). e

(iii) This is easy to see. If t¢ .?R(c), then there is a decision
function ¢ such that lim ¢k(c) =1, By taking 'rk=<pk(c) in (2.8), we see
that te€ R(q). i

(iv) Suppose that (2.8) holds foi‘ some T in R(o). If A denotes the

set symmetric difference, then

‘(2.14) {1:81:} A {tk=f} e {t=1}

and from (2.8) it follows that

(2.15) l1‘im P({r=t} & {r,=t}) = 0

Since Ty € FR(o) < ST(c), the event {rkat} is F(t)-measurable for each k.
The completeness of F(t) and (2.15) imply that {r =t} is also F(t)-measurable.
Simi‘lar‘ly, gs T, a.s. for all k implies that os<t a.s., and thus, te ST(0).
The inclusion relations in (2.10) generally cannot be replaced by

equalities. The following simple examples illustrate this fact.

Example 1. FR(c) = S&(0)

Let T denote the set of positive integers ordered in the usual way.
Let t be any random function taking values in T such that P(t=t)>0 for
all t. Define .z-"(t) as the o-field generated by {t=s} for sst. Leto=1.
Then with respect to {F(t) : teT}, o is a stopping time and t is strongly

reachable from ¢ but not finitely reachable from o.
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Example 2. SR(o) = R(0)
Let T={0} v {-’17 : n21} and order T in the usual way. Let t be any

random function taking values in T- {0} such that P(r=t)>0 for all t=0.
Define F(t) as the g-field generated by {r=s} for s<t, and let g=0. In
this case F(0) is the trivial g-field and any decision function ¢(t) is
almost surely constant at t=0. Thus, we must have ¢(o) =% for some n and
t;here is always a non-zero probability P(r<%) that ¢k(a) =1 for all k.
Therefore, t is not strongly reachable from g. However, by choosing a
decision function with ¢(0) =% for sufficiently large n we can make the
probability that ¢k(&) =1 for some k arbitrarily small, and thus, t is

reachable from g.

Example 3. R(o)=5T(0)

We present an example from Chow (1960) to show tﬁat 0S(c) = 5T(c) by
constructing a stopping time t in ST(c) which does not belong to 0S(c).
In the next theorem we will show that R(g) c0s(o) and thus, this stopping .
time t cannot belong to R(c). Unlike the previous examples which used
linearly ordered index sets, to show R(g) =ST(o) we must use a partially
ordered index set. Let T consist of three points a, b, c with the order
relations as<b and asc. Let t be a random function taking only the values
b and ¢ each with probability one-half. Let F(t) be the o-field generated
by T=t for each t in T. Then F(a) is the trivial o-field, and F(b) = F(c).
If t=Db or t=c, define X(t)=1 if t=< a;ld X(t)=-1if t=1. Let X(a)=0.
Then E(X(b)|F(a)) =E(X(c)|F(a)) =X(a) and X is a uniformly bounded martin-
gale on T. However, E(X(t)|F(0))=-1< X(o) énd hence T¢ 0s(o).

In special cases we can have some equalities in (2.10). For example,

-
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the argument of example 3 is easily extended to show that R(c)=ST(¢) in
case T,s is linearly ordered. In Theorem 3 we will show that SR(c) = R(o)
if the index set is a special type of partially ordered set called a tree.
fn subsection 2.3 we will give a more general condition for the equality
1 SR(o) =R(0). Note that FR(o) =SR(c) = R(c) whenever the index set is

i % finite. _
1 Intuitively, t is reachable from o if there is a finite sequence of
decisions which reaches t from o with arbitrarily large probability. The
sequence is {¢j(a) : 0s js'k} and the decisions ¢j(c) must be nondecreasing

with respect to the partial order (2.3) and each decision ¢j+l(a) must be

measurable with respect to the previous decision ¢j(o) as required in
(2.4). ‘Given this definition of reachability, it is not surprising that
the optional sampling theorem is true for reachable pairs of stopping

times. Indeed, one merely applies the result for submartingales indexed

by inteaers as we now show.

Theorem 2

Suppose that o is a stopping time. Then the following relationship

is true:

(2.16)  R(o) < 0s(0)

Proof
* Suppose that X is a submartingale uniformly bounded by X+, and let
¢ be a decision function. Suppose that A is an event in 7(g). Consider

E(X(¢(o))1A) and rewrite it as

S ——




(21 1 1B g(g)atin (omshnn)

Since the event {$(s)=t} n {o=s}n A is F(s)-measurable and since X is

a submartingale with respect to {F(t) : te T}, we must have

(2.18)  E(X(®)1g(5)mtin (omsin) 2 EX(S) 14 (5)atsn gmsian)
for sst. Substituting this expression in (2.17) and summing over t gives

2.19 E(X(s)1
(2.19) ] E(X(5)1gugyy )

yhich is equal to E(x(a)lA). Thus, we have shown that
(2.20)  E(X(¢(0))|F(a)) 2 X(o)

Applying the principle of mathematical induction, it follows that (2.20)

remains true if ¢k(o) replaces ¢(o). Consequently, we have FR(g)<0sS(o).
Applying the above result to proving the theorem is straightforward.

Let {rk} be a sequence in FR(g) which converges to t in the sense of (2.8).

Rewrite X(rk) as

(2.21)  X(t}) = X(z) + (X(t}) -x(‘l'))l.l.,.rk

and note that from our previous result we have
(2.22) E(X(rk)lr(a)) 2 X(o)

for each k. Substituting the equality relation (2.21) into (2.22) gives

for each k the inequality




14

(2.23)  EX()[F(6)) + E((X(5) = K21y )IF(0)) 2 X(o)

By assumption IX(rk) - X(t)| is uniformly bounded by 2x*. Ssince P(rsrk)»o
as k+=, it follows that

(2.28) 1w E((K(T) - K7Dl [7(6)) = O

Applying (2.24) to (2.23) gives the desired result.

Before proceeding, let us discuss the relationship of reachability
to Haggstrom's control variables. Haggstrom (1966) considered a special
type of partially ordered index set, called a tree, and a special type of
stopping time which he called a control variable. A tree T,s is a par- ?
tially ordered set which consists of finite sequences (tl.tz.... ,tn) where |
t; are elements of some abstract set which we leave unspecified. The set |

T must have the property that if (tl.tz,...,tn) lies in T, then so does

(tl.tz.....tn) for each k, 1sksn. The partial order < on T is defined |
so that sst for two sequences t= (tl,tz,...,tn) and s= (sl,sz,...,sm) ‘
if and only if msn and si't‘l for each i, 1<ism. Associated with T

is an increasing family which we denote by {F(t) : teT} as before. A

control variable t is a random function t : Q+T with the property that

for each n21, the events {t=t} and {(tatgaecnty sty )) st} are F(t)-

measurable for t= (tl'tZ""'tn)' In addition, include the empty sequence

o in T and assume that the events {o=t} and {(t,) st} are F(o)-measurable

for each sequence of the form (tl) in T. The following proposition shows

that Haggstrom's control variables are equivalent to random functions

reachable from the constant stopping time o=o in our fomulation;




Theorem 3

Suppose that T,s is a countable tree and let t : Q+ T be a random
function. Then t is a control variable if and only if it is reachable

from the constant stopping time o=0. Moreover, in this case SR(o) =R(0).

Proof
Suppose first that t is a control variable. Then for each t= (tl.tz..
in T define ¢(t) as

(2.25)  o(t) =(tuty,. . utpaty o)

if (tl,tz....,tn,tml)sr. and
(2.26) o(t) = t

if (tl’tZ""'tn’tnﬂ) gt forany t Note that since T,< is a tree,

n+l’

the events {(t;,ty,...,t 1) st} are disjoint for different t . and

n*tn+
hence, ¢ is well-defined. To see that ¢ is a decision function as defined
in Section 2, we must check that (2.3) and (2.4) are satisfied. Property

(2.3) is clear from the definition of ¢. Since T is a control variable,

the events {(tl,tz....,tn.tml) st} are F(t)-measurable for t= (tl.tz.....tn)

and hence, property (2.4) is satisfied. Now let us show that lim ¢k(a)
exists and is equal to 1, so that teSR(o). Consider the even:;.{tf t}

and {t<t} as follows. If tzt(w), then by cgnstruction we have ¢(t,w) =t
and hence, 1im ¢k(t.m) st. If t<t(w), ther by construction we have
t<o(t,w) s:-(:). If t=(t;sth,..nty) and t(w) = (15(w)stp(w)s.enstyy, (@),
then (1 (w),T(0)s. -+ 1 Tpqy(0)) s 6(t,0) for 1535k, - Hence 65(t,u) = t(u)

-
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and lim ¢k(t.u) =t(w). Thus, we see that lim ¢k(t,u) = t(w) whenever
k-0

Sl

tst(w). In particular, we must have that Hmk(o) =1, It follows
koo

that t is strongly reachable from o.

To show the converse, assume that t is reachable from o. We must

show that {t' st} is P(t)-measurable for t= (t)stps...sty) and t"(tl,tz....

in T. First suppose that i' is finitely reachable frano so that r-¢k(o)

for some decision function ¢ and some integer k2 0. Thus, we have

k S
(2.27) {t'st} = v {¢j(o)st. t' s o9t l(0)}

J=0
As we proved in Theorem 1, ¢J(o) is a stopping time for each j and hence,
{¢j(o) =s} is F(s)-measurable and hence F(t)-measurable for all sst.
Since ¢ is a decision function, the event {t' s ¢(s)} is F(s)-measurable,

and hence F(t)-measurable for sst. We can write

(2.28)  {o3(0) s t, ¢ S¢j+1(o)}=s:t({¢j(o)*5} n {t'se(s)})

and thus, the event {¢j(a) sk ¢ s¢j+1(a)} must be F(t)-measurable. From
(2.27) 1t follows that {t' st} is also F(t)-measurable, and consequently,
each t in FR(o) is a control variable.

To see that t in R(o) are also control variables, let {r,} be a

sequence in FR(o) which converges to t in the sense of (2.8). For éach k

we have

(2.29) |t st} o{t'st)e - )

s &
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We have just showed that {t'st,} is F(t)-measurable for each k. Ar-
guing from (2.29) as we did in part (iv) of the proof of Theorem 1, we
deduce that {t'st} is also F(t)-measurable. Hence, each Tt in R(o) is a
contral variable.

Thus, we have shown that all control variables are strongly reachable
from o and that all T which are reachable from o are control variables.
Using the result SR(o) cR(o) from Theorem 1, we see that in fact Sr(o) =
R(o) in this case and the notions of strongly reachable, reachable and

control variable are equivalent.

2.3 Optimal Stopping Problem and Converse Optional Sampling

We now turn to proving the converse opﬂonal sampling theorem, namely
that 0S(o) cR(o). To do this we first consider an optimal stopping prob-
lem, defined on partially ordered index sets, which is a generalization
of Haggstrom's (1966) stopping problem on trees.

Theorem 4
Suppose that the mapping ¢ : TxQ+R is uniformly bounded and adapted
to {P(t) : te T}. For any random function t : Q+T define w(t,t) as

(2.30)  m(t,t) = E(c(7)|P(t))

Define w(t) as
(2.31) =(t) = ess inf{n(t,t) i Te R(t)}

and let 7 denote the mapping from T xQ to R defined by (2.31). Then =
satisfies the equation




(2.32)  =(t) = inf{E(x(s)|F(t)), c(t) : t<s]

for all t in T. Furthermore, for any stopping time o and € >0 there

exists T in SR(o) such that
(2.33) w(c) + € 2 n(o,T)

Proof -
Note first that

(2.34) ess ﬁf{v(t.r) : teR(o)} = ess inf{n(t,t) : e FR(0)}

To see that this is true let t be an element of R(0) and Tet {r,} be a
sequence of FR(o) converging to tr as in (2.8). It is easy to see that
c(rk)-»c(r) in probability, and hence, there exists a subsequence of
{e(z) )} which converges almost surely to c{t). Let {c(r,)} also denote
this subsequence. Since ¢ is uniformly bounded, the conditional expec-
tations w(t,rk) defined in (2.30) must converge to wn(t,r) almost surely.
The equality of (2.34) follows from this.

Define #(t) as

(2.35)  #(t) = inf{E(w(s)|P(t)), c(t) : t<s]

We will prove that w(t) =#(t) in order to demonstrate (2.32). It is easy
to show that w(t) 2%(t). In order to do this, let t be an element of
FR(o) and 1&. r-ok(t) for the decision function ¢. Then the following
relation must be true.

(2.36) c(1) = tgs C(¢k-1(s)) 1¢(t)-s +c(t) 1¢(t)'t




Note that ¢k°1(s)e FR(s) for each s such that t<s. Thus, from (2.34)
and (2.31) we see that

(2.37)  E(c(e*1(s))|7(s)) 2 n(s)
and from the definition (2.35) of #(t) we must have
(2.38)  E(c(6*"1(s))|P(2)) 2 #(t)

for each s such that t<s. Conditioning (2.36) with respect to F(t) and
using (2.38), we obtain ‘

(2.39)  E(c(1)|P(t)) 2 %(t)

Since te FR(t) in (2.39) was chosen arbitrarily, the relation (2.31) and
(2.34) imply that =(t) 2#(t).

The opposite inequality, wm(t) s#(t), is slightly harder to prove, but
it follows easily once we show that (2.33) is true for constant stopping
times. As shown in Chow, Siegmond and Robbins (1971), the essentialy
infimum (ess inf) has the property that it is almost surely equal to an
infimum over a countable collection of random variables. Using (2.31) and
(2.38), we see that there is a countable set {r,]} of random functions in

FR(t) such that
(2.40)  m(t) = infln(t,7) : k21]

In Theorem 1 we proved that FR(t) < SR(t) and therefore, there exist de-

cision functions °k such that for each k

n
(2.01)  1m 6(e) = 5 .




i
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Define the integer-valued random function k* to be the least integer
k21 such that =(t) +ezn(t.rk). The random function k* is thus defined
almost everywhere and it is F(t)-measurable. Let ¢ be defined so that
¢(r) =r for all r such that tzr, and such that ¢(r) =q>k,(r) for tsr.
Then the mapping ¢: TxQ-+T is defined for almost all w and by defining
¢(r,w) = r where k*(w) is not defined, one easily sees that ¢ ¢ D. Moreover,
(2.42)  1im o"(t) = 1,
N

Hence, t,, must be in SR(t) and by definition of k* it must be true that
n(t) +e zn(t,tk*) :

We can now show w(t) s#(t) as follows. For €>0 and for s such that

t<s, choose t in SR(s) such that
(2.43) n(s) + € 2 n(s,1)

Let -r-'l'lmk(s) for ¢ ¢ D. Define a new decision function ¢ as y(r) =¢(r)

k400 2
for ssr, Yp(t)=s and y(r) =r for all ather r. Then lim wk(t) =1im ¢k(s)
Kk-o0 k=

and hence, T is an element of SR(t) and also an element of R(t). From

(2.43) it follows that
(2.44) n(s) + € 2 E(c(t)|7(s))

Conditioning (2.44) with respect to F(t) we obtain E(m(s)|F(t)) +e2m(t,T)
and consequently, E(w(s)|F(t)) +c2m(t). Since ¢ was arbitrary we obtain
E(m(s)|P(t)) 2n(t). It is clear that c(t)2m(t), and thus, we have
#(t) 2m(t).

To finish the proof we must demonstrate the inequality (2.33) for




arbitrary stopping times o. From above we know that for each t there

exists Ty € SR(t) such that
(2.45) n(t) + e 2 n(t,rt)
for a given €>0. Let "t‘ D be such that

(2.46) Vim ¢:(t) =1,
kv

Define a new decision function ¢ such that ¢(t) =.¢r(t) ifrstando=r,
and o(t) =t if oxt. In this case the 1imit t=1im ¢"(c) exists and is
ko

equal to l‘im ¢|;(r) whenever o=r. Thus, te SR(g) and from (2.45) it
el

follows that n(c) +e2n(o,t).

Theorem 5

If o is a stopping time on T,s with respect to {#(t) : te T} then
0s(a) = R(0).

Proof

We have already shown in Theorem 2 that R(o) <0S(o). Thus, it
suffices to show 0S(o)cR(c). Suppose that t ¢ 0S(c). We apply Theorem 4
to the optimal stopping problem with cost function c(t) = 1T =t It follows
that = in (2.31) is a submartingale uniformly bounded by 1. Since we
assume that te¢ 0S(ag), the opticnal sampling inequality (2.2) is true for
X=7n and thus. E(n(t)|P(0)) 2m(c). Since w(t) is clearly 0 by definition
of ¢ and since w(g) 20, we have n(g) =0. From (2.33) there exist T in

SR(c) such that for each positive integer k

(2.47) (o) + ]1-‘- 2 W(O.Tk) by
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Noting that w(c) =0 and w(a,rk) -P(rk = t|P(g)) in (2.47), we obtain the

following result: g

(2.48)  P(r =t|F(0)) s ]-1(-

Taking the expectation of (2.48) gives P(tksr) s%—. Since each T is

strongly reachable from o, according to Theorem 1 it is also reachable

from o, and hence there are "I'c‘ FR(o) such that P(rl'(ark) s%. It follows
that P(rl"ar) s%— for each k and consequently te¢ R(0).
The following corollary, which follows from (2.48), improves the ap-

proximation (2.8). :

Corollary 5 ;
For each te R(o) there exist T € SR(g) such that

(2.49) 1im P('rks'rli'(a)) =0
| Sand ;
where the convergence in (2.49) is uniform on a set of probability one.

When the infimum in (2.32) is a minimum, we may refine the results

of Theorem 5 and in some cases prove that all reachable random functions

are in fact strongly reachable. We present these results below in Theorem
7 and its corollaries. The following simple theorem shows that the in-
fimum is actually a minimum for a large clas_s of index sets. If T,s

is a partially ordered set and te T, then we say that s is an immediate

successor of t and write t<«s if t<s and if tsrs<s for no r other than

: [ tors.

Theorem 6

Suppose that the partially ordered index set T,s in Theorem 4 is such

g W 9




that each t in T has at most a finite number of immediate successors.

Then the infimum in (2.32) is a minimum.

Proof
Note that since m is a submartingale we have that E(w(s)|F(t)) s
E(m(r)|P(t)) for each t<ssr. Since for each r such that t<r there is

an immediate successor s of t such that ssr, we have
(2.50) | inf{E(n(s)|P(t), c(t) : t<s} = inf{E(n(s)|F(t), c(t) : tes}]

The infimum on the right hand side of (2.50) is taken over a finite set

of s by assumption, and consequently it is a minimum.

Theorem 7

Let g be a stopping time with respect to {F(t) : teT} and let te R(0).

Let 7 be the uniformly bounded submartingale defined by (2.31) in Theorem 4
with the cost function c(t) = l‘tat' Suppose that there exists ¢ such that

(2.51)  m(t) = E{m(s(t))|F(t)}

for each t and ¢(t) =t if and only if w(t) =c(t). Then T R(¢k(c)) for
each k, and in particular, ¢k(c) < T for all k. Furthermore, whenever the

limit 1im ¢k(a) exists, it is equal to T.
k-rco

Proof

If p is a stopping time, then from (2.51) it follows that
(2.52)  m(p) = E{m(d(p))|7(0)}

Letting p=¢k(o) successively for k>0 we see that {n(¢k(o))} is a one

parameter martingale with respect to {5’(¢k(c))}. Since Te R(c) implies
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that m(c) =0 and since 720, we see that 1r(¢k(c)) =0 also for each k.

Using the same argument as in Theorem 5, we deduce that Te R(qa"(c)). It

e U e et Sl i

follows that ¢k(c) <t a.s. from the definition of R(q;k(o)). Finally,

to prove the last assertion of the theorem suppose that 1im ¢k(o) exists

-»00

so that ¢k(o) =¢kf1(a) for some k. The condition that ¢(t) =t if and

L T -

only if m(t)=c(t) implies that m(¢¥(0)) =c(6X(a)). Since n(¢¥(0)) =0,
it follows that c(¢k(o)) =0 and hence, ¢k(o) =1. The following corol-

laries are immediate consequences of Theorems 6 and 7.

Corollary 7.1

Assume the same conditions as in Theorem 7. Suppose that the index
set T has the property that for any s, t in T with s<t, there is no
infinite sequence {rn} in T such that s<r <r ., <t for all n. Then for

the decision function ¢ satisfying (2.51) we have

(2.53) lim o5(a) = <

Corollary 7.2

If the partially ordered index set T,s is the set of integer n-tuples "
with the coordinate-wise partial ordering, then SR(o) =R(o).

Corollary 7.3

If the partially ordered index set T,s is finite, then FR(0) =Sr(0) =Rr(a).




3. Conditional Independence and Optional Sampling

For particular types of index sets T,< and increasing families
{F(t) : t; T} it may be true that for any pair t,0 of stopping times with
os t that t is reachable from o. For example, this is true if T,s is
countable and linearly ordered. In this section we present two other
genéfal cases where this is also true and where the index set is not
linearly ordered.

To begin we make two assumptions, one concerning the index set T,<
and the other concerning the collection {F(t) : te T} of o-fields. Namely,
assume that for any two elements t, s of T there is a greatest lower
bound tas of t and s with respect to the partial ordering of T. This
is true, for example, if T,s is a tree, as defined in Section 2, or if
T,s is a lattice such as Z" or R" with the coordinate-wise partial or-

dering. In the second case, the ith

coordinate of tas is min{ti,si}
where ti and sy are the 1th coordinates of t and s respectively. The
second assumption we make is that {F(t) : te T} satisfies the following

conditional independence property.

Definition 5
The increasing family {F(t) : te T} satisfies the conditional in-

dependence property if for each s and t in T, the g-fields F(s) and F(t)

are conditionally independent given F(sat).
This conditional independence property was defined for the case of

1'-R3 by Cairoli and Walsh (1975) in their study of stochastic integrals

on the plane. The multiparameter Wiener process on R2 defined by'?ark (1970)
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generates o-fields which satisfy the conditional independence property.

If T,s is an index set with the property that any two elements of T have

a greatest lower bm;nd. then-we can construct a simple example of a
collection of o-fields with the conditional independence property as
follows. Let {x(t) : te T} be a collection of independent random variables
and let P(t) be the o-field generated by the collection {x(s) : s st} of
random variables. It is not hard to see that the collection {F(t) : te T}
so defined satisfies Definition 5.

We will show that if T,s is either a tree or Z"Z with the coordinate-
wise ordering and if {P(t) : te T} has the conditional independence pro-
perty, then SR(c) =ST(c) for all stopping times o. The first case we
consider is that for which T,s is a countable tree as defined in Sec-

tion 2.

Theorem 8

Suppose that T,s is a countable tree and that the increasing family
{F(t) : te T} has the conditional independence property. If o is any
stopping time, then sr(c¢) = s7(0).

Proof

Having proved that sr(g) <sT(c) in Theorem 1, we need only prove
Sr{c) csr(o). For a given stopping time t we will construct a decision
function ¢ such that for any stopping time o with g<t, the 1imit lim ¢k(o)
exists and is equal .to To i

Fix t in T and define ¢(t): Q+T as follows. For each immediate

successor s of t, let I\s denote the F(t)-measurable event
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(3.1) A= {w: P(sst|F(t)) >0}

s
Note that for each s the definition (3.1) implies that

(3.2) P(Asn {sst}) = P({sst})

Suppose that s and s' are immediate successors of t with s=s', and let
ssrand s'sr'. Because T,s is a tree, we must have r=r' and rar' =

sas' =t. Thus, the conditional independence property implies that
(3.3) P(t=r|F(t)) P(t=r'|F(t)) =0

Summing (3.3) over all r,r' such that s<r and s'sr' gives

(3.4) P(sst|F(t)) P(s'st|p(t)) =0

From (3.4) and (3.1) it follows that for each s=s'

(3.5) P(Asn As.) =0

Using the assumed completeness of F(t) and redefining the Ason sets

of measure zero if necessary, we deduce from (3.2) and (3.5) that

(3.6) {sst} < A

(3.7) Asn As. =P

for all s,s' such that t<es,s' and s=s'. Let At denote the event in

F(t) defined by

(3.8) Ay = (2 - {As : tos))u {t=t}
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.

We can define ¢(t) in terms of the sets At and As for t<s as follows.

(3.9) d(t,w) = t if we A,
(3.10) o(t,w) = s if we A - A,

Property (3.7) and the definition (3.8) insure that ¢(t) is a well-defined
function. Property (3.6) insures that if t<<t, then ¢(t)s-r: Further-
more, if tst and ¢(t)=t, then t=t. If o is any stopping time such that
gst, then ¢k(c)$‘(’ for each k. Since T,s is a tree and has the property
mentioned in Corollary 7.1, the limit 1lim ¢k(o) exists almost surely. By
construction this limit p is such thatk;:r and ¢(p) =p. Consequently,
p=T.

The property of a tree that makes Theorem 8 possible is that for each
s,s' such that tes,s’ and s=s' we have {r : ssrjn{r' : s'sr'}=p.
This property will not hold for more general partially ordered index
sets such as T=Z". Nevertheless, we can adapt the proof of Theorem 8

to the more general case of T= Zz.

Theorem 9

Suppose that T= Zz and < is the coordinate-wise partial ordering of
22. Furthermore, suppose that the increasing family-{F(t) : te T} satis-
fies the conditional independence property. If o is any stopping time, '

then SR(c) = ar(c).

Proof

As in Theorem 8, for a given stopping time t we will construct a

decision function ¢ such that lim ¢k(a)-r for any stopping time o with

k-+oo

-
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gsT.
Fix t= (tl.tz) in 22 and define ¢(t) : Q»Zz as follows. Define the
events Kl and KZ as

(3.11) Ky = u {t=(t,it,+n)
% 0 dreityity $el)
(3.12) = y {v=(t,+m,t,)}
g Rl &, t
The conditional independence property implies that F((tl.t2+n)) and

P((t1+m,t2)) are conditionally independent given F((tl.tz)) for any

m,n20. Thus, we have

(3.13)  Plr=(ty,ty +n)[P(t)) Plr= (¢, +mty)[F(t)) = O

for all n,m>0. From (3.13), (3.11) and (3.12) it follows that
(3.14) P(Kllf(t)) P(KZIF(t)) =0

Define the F(t)-measurable events A(tl’tz"l) and A(tlﬂ'tz) as
(3.15) A(tl"z*l) = {u: p(Kllp(t))w}

(3- 16) A(t1+1’t2) = Q - A(tlvtz*l)
It is not difficult to see that

(3.17) P(A(tvtz’l)n I(l) x "(Kl)

and that
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(3.18)  P(A(y 1 a1)0 k) 0

From this point on the proof follows Theorem 8. Using the assumed
completeness of F(t) and redefining A(tl,tz+1)a"d A(tlﬂ’tz) on sets of

measure zero if necessary, we deduce from (3.17) and (3.18) that

(3-19) Kl c A(tlgtz"'l) =

(3.20) K < Ap gt )

where A(tlytz"'l)n A(t1+1,t2). ” and A(tlotz"'l)u A(t1+1,t2) =Q. Let
A(tl,t‘é)s {r=(t;st;)} and define ¢((t;,t,)) as:

(3:21)  ol(tyatplm) = (ttp)  IFwehq o)
GuB) . oyl = ISrelit) . W tlie i ity )

(3.23)  a((ty,ty) ) = (tg,ty+1) if i (TR e (R

For this decision function ¢k(c)sr for any stopping time ¢ such that
ost. Since 22 also has the property of Corollary 7.1, the limit lim ¢k(o)
exists almost surely and is equal to <. 45

We cannot extend the proof of Theorem 9 to the case of T= " for
n>2. The following example shows that in fact the result is not generally
true for n>2.

3

Example 4. R(c) =ST(c) when T=2" and when the conditional independence

property holds true.




Without loss of generality we construct the example for the index
set T defined as the Cartesian product {0,1} x {0,1} x {0, }, a subset of
Z3, namely the vertices of the unit cube. One can easily extend this
example to one on all' of Z3 or 1:oAZn for some n>3. Let Q= {“’i : 12158} .
with P”“H“'% for each 1, and let 7 be the collection of all subsets

of Q. Define three random functions a, 8, Y from Q onto {0,1} as follows.

alay) = alup) = alug) = aluy) = 0
-c(ms) = aluwg) = alw;) = a(ug) = 1
Bwy) = Bluwy) = Blug) = Blwg) = 0
B(wg) = Blwy) = Bwy) = Blug) = 1
i) . Ylwg) = vlug) = v(wy) = 0
Ywy) = vlwg) = vlwg) = v(ug) =1

It is not difficult to check that o, B, Y are independent random functions.
We can now define the d-fields {F(t) : t «T} in terms of these random
variables. Let F((0,0,0)) be the trivial o-field {Q,p}. The o-field
F((1,0,0)) is generated by a, #((0,1,0)) is generated by g, 7((0,0,1))

is generated by v, 7((1,1,0)) is generated by a and 8, F((1,0,1)) is
generated by a and v, P((0,1,1)) is generated by 8 and y, and F((1,1,1))

is generated by all three random variables--hence, F((1,1,1))=F. Since

a, B, and v are independent, it is easy to check that {F(t) : te T} satis-
fies the conditional independence property.

Define a submartingale X on T as follows. Let X((l,l.l))(m3)'
x((l.l.l))(us)--l and let x((1.1.1))(u,)- 1 for i{=23,6. Define X(t)=0
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for  t=(1,1,1). To check that X is a submartingale, it suffices to
show that E(X(,1,1))|P(t))=20, for t=(1,1,0), (1,0,1), (0,1,1). A
simple calculation shows that E(X(1,1,1))|F((1,1,0)) is equal to 1 if
W= Wy 5y sl sig and it is equal to 0 if 0= Wa Wy 55 sWe. The other con-
ditional expectations are similar.

Finally, define t(w)=(1,1,0) if W= Wy sy} let t(w)=(1,0,1) if
w=ug,uy; Tet T(w) = (0,1,1) 1f w=w,ug; and let t(w) = (1,1,1) if w=wy,wg.
It is easy to check that t is a stopping time. Let o=(0,0,0). Then

a simple calculation ‘shows that

CE(X(1)|F() = E(X(1)) = (-1)} + (0)F = -} 2 0 = X(0)

Consequently, t ¢ 0S(0) and from Theorem 2 it follows that t ¢R(c). Thus,
R(o) = s7(0).
To conclude the results of this paper we state an optional sampling

theorem which follows easily from Theorems 8 and 9 and Theorem 2.
Theorem 10

Suppose that T,s is either a countable tree, Z2 or Rz. Let the in-
creasing family {P(t) : t T} satisfy the conditional independence pro-
perty, and let X be a uniformly bounded submartingale with respect to this

increasing family. If Ts= Rz then also let X be right continuous in the
sense that

1im X(s) = X(t) for all t
s+t,t<s

If 0 and T are stopping times with o< t, then E(X(t)|F(d)) 2 X(0).




Proof
For T= Z2 or T a tree the proof follows immediately from Theorems

R pm—

8, 9and 2. For T= R2 one proceeds as for Rl by taking limits of stopping
times taking only finitely countable many values in R2 and using the
result for T= Z2 Since there are very few changes from the one-parameter

: , case, for example as given in Neveu (1965), we omit the proof.




4. Conclusions

We have shown that for a given pair o,t of stopping timeé such that

osT on a countable partially ordered set, the optional sampling inequality
(4.1) E(X(t)]|7(0)) 2 X(0)

is true for all uniformly bounded submartingales X if and only if t is

reachable from o. This result stands in sharp contrast to the martingale
results of Chow (1960) and Kurtz (1977).. If X is a uniformly bounded
martingale and if the index set is directed, then (4.1) is true for any
stopping times 0,7t such that o< t. Note that our result does not require
that the index set be directed.

Our characterization of the collectioh 0S(o) of stopping times t for
which (4.1) is true shows that optional sampling is intimately associated
with sequential sampling problems--namely, reachable stopping times are
defined in terms of sequential decision functions as described in Section
2. Thus, even for the case of a partially ordered index set, the optional
sampling theorem is necessarily a one-parameter result. As we have shown
in Section 2, the optional sampling theorem is true for general uniformly
bounded submartingales if and only if the stopping times are reachable
and hence if and only if the theorem can be reduced to its one-parameter
varsion.

In certain special cases discussed in Section 3 it is possible to
show tha; the optional sampling inequality (4.1) is true for all stopping
times and all uniformly bounded submartingales. To obtain such results

-
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we assumed that the increasing family of o-fields satisfied a conditional
independence property qriginany given by Cairoli and Walsh (1975). This
property is possessed by o-fields generated by multiparameter Wiener
processes, for example. Thus, we proved the optional sampling theorem
for the special cases when T is a tree or when T= Z2 or RZ. The counter-
example of Section 3 shows that the theorem is not true for T= Z3.

fhe preceding results completely characterize the situations in which
the optional sampling theorem is true with no restriction on the sub-
martingales other then uniform boundedness. If further restrictions are
placed on the submartingales, it may be possible to obtain different
optional sampling results. For example, if X has a Doob deéomposition".
it is easy to apply Kurtz's (1977) result to show that (4.1) is satisfied
for all stopping times. Thus, suppose X(t) =M(t)+A(t) where M is a

martingale and A is an increasing process in the sense that A(s) s A(t)

if sst in the partially ordered index set. Then if the index set is

directed, Kurtz's result implies that E(M(t)|7(o)) =M(c) for all stopping

times o,t such that ost. It is clear that A(o) < A(t) and hence
E(A(t)|F(0)) 2A(0). Thus, E(X(t)|F(0)) 2 X(c) is also true.

Of course, the fact that the optional sampling theorem is not generally
true in the case of partially ordered index sets means that not all sub-
martingales have such Doob decompositions. Indeed, if t is not reachable
from some stopping time.& where ost, then the submartingale m of Theorem §
has no Doob decomposition. For otherwise (4.1) would be true for X=n
and the argument of Theorem 5 would imply that t is reachable from o, a

contradiction.




Despite the fact that reachability is a rather stringent condition

on stopping times taking values in partially ordered sets, there are some
cases 5n which the stopping times naturally have this reachability pro-
perty. Washburn (1979) has considered optional stopping problems of

the type described in Section 2.3 for which the index set T is either

R" or a collection of subsets of RZ. In these problems the stopping
times are reachable as defined here provided that they take at most
countably many values jn the partially ordered index set. Since the
index sets_in these and other applications of interest are nondenumerable,
it is important to extend the concept of reachability and the results

: of Section 2 to uncountable index sets. In particular, one would like

to extend the results of Section 2 to the case where decisions are made
continuously. Thus, one must make sense of differential equations of the

form
(4.2)  $=o(x(s)

where ¢ is a decision function and s+t(s) is a continuous trajectory of
stopping times. In (4.2) we assume that the time set is some linear space
such as R". In order that the path s+t(s) should increase we must
assume that the components of ¢ are all nonnegative.

The previous discussion has been carried out only at the heuristic
level and all the conjectures discussed will require rigorous proof. Note .
that Kurtz (1978) has investigated a class of continuous parameter stop-
ping times which satisfy a differential equation of the form (4.2).

Kurtz (1978) investigated thes- -ultiparameter stopping times whilg
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studying processes x(t) (here te Rl) of the form

t
@30 = X0+ T agh(] 8k

i=1

h

where wi are independent Wiener processes. The it component of the

stopping times t(t) is given by
t
(4.4)  14(t) = ]0 B, (X(s))ds

Note that T represents a random time change for the Wiener process W.
It seems 1ikely that the stopping time t defined by (4.4) will be reachable
in some sense appropriate for the index set R" and hence that the optional

sampling theorem for submartingales is true for these stopping times.

Note that Kurtz (1978) used the martingale version of theorem which he

had proved earlier in Kurtz (1977).
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conditional independence property is satisfied in cases where the
submartingales and stopping times are measurable with respect to the

: two-parameter Wiener process. nA counterexample shows that the optional
| sampling result is false for R when n?2 even if the conditional
independence property is satisfied.




. Footnotes

A directed set is a partially ordered set with the additional property

that every two elements in the set have a common upper bound.

See Section 2 for these definitions.

The reals and nonnegative reals are denoted by R and R,» respectively,
and the integers are denoted by Z. The Cartesian products are denoted

R", R} and 2", respectively.

See Doob (1953) for the discrete index version or Meyer (1966) for

the continuous index version.
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